
Appendix D

Subgrid Wall Function Transport

Equations

In the subgrid wall function a number of assumptions are made to obtain a set of simplified transport

equations:

• Only the velocity components parallel to the wall are solved.

• Diffusion parallel to the wall is assumed to be negligible in comparison with diffusion normal

to the wall.

• Convection is modelled in non-conservative form.

• The velocity component normal to the wall is obtained from continuity across the subgrid con-

trol volumes, with an additional scaling factor to ensure consistency in the boundary conditions.

For the present purposes of deriving transport equations in non-orthogonal curvilinear coordinates it

is assumed that the wall is in the ξ1 −ξ2 (or ξ−η) plane, and ξ3 ≡ ζ is the wall-normal direction1 . In

this reference frame, only the U - and V -momentum equations are solved across the subgrid and only

diffusion terms involving gradients in the ζ-direction are significant.

D.1 Convection of Momentum

In Appendix C, the convection term in the momentum equation was derived as follows:

(U ·∇)U =

(
U ( j)

√
g j j

∂U (i)

∂ξ j −U (i)U ( j)
Γm

i jgim

gii
√

g j j
+U ( j)U (m)

Γi
m j
√

gii
√

g j jgmm

)
g(i) (D.1)

1In fact, if a skewed grid is employed, the ζ-direction may be at an angle to the wall other than 90o.
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200 APPENDIX D. Subgrid Wall Function Transport Equations

where U (i) represents the physical velocity components aligned to the curvilinear base vectors and the

last two terms, involving Christoffel symbols, arise from the use of a non-uniform grid. The UMIST-

N wall function employs an upwind scheme for discretizing the convection term. However, rather

than use the above expression for convection of momentum, the UMIST-N wall function transforms

the velocity components in the upstream cell from the coordinate system used in the upstream cell

into the coordinate system used in the current cell. To illustrate this, Figure D.1 shows a curved

surface with a wall-parallel U -velocity in the positive ξ-direction and W -velocity in the ζ-direction.

Using an upwind scheme, the wall-parallel convection term for node P is calculated by transforming

the upstream velocity at node W from the coordinate frame used in cell W into the coordinate frame

of cell P. Since the velocity components in the upstream and the current cells are expressed using

identical base vectors (i.e. base vectors do not rotate between the adjacent cells), gradients of the

metric tensors are zero. This means that the Christoffel symbols appearing in Equation D.1 are zero

and the expression simplifies to:

(U ·∇)U =
U ( j)

√
g j j

(
∂U (i)

∂ξ j

)∗

g(i) (D.2)

The asterisk is introduced around the velocity gradient term to denote that upstream values of U (i) are

transformed into the coordinate system used in the current cell. In the current version of the UMIST-

N wall function, the upstream velocity is transformed from the upstream covariant base vectors into

Cartesian base vectors and from there into the current cell covariant base vectors. Details of these

transformations which involve the Jacobian and inverse Jacobian matrices are provided in Section

E.8. Reasons for adopting this practice are discussed in Appendix G.
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Figure D.1: Schematic of subgrid cells over a curved wall showing the transformation practice adopted
for convection of momentum.

The subgrid momentum equations in non-orthogonal curvilinear coordinates can therefore be writ-
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ten as follows:

ρ
∂U (i)

∂t
+

ρU ( j)

√
g j j

(
∂U (i)

∂ξ j

)∗

=
1
J

∂
∂ξ j

(√
giiJτi j)+Si

U (D.3)

where the source term, Si
U , is given by:

Si
U = −gi j√gii

∂P
′

∂ξ j − τi j
Γm

i jgim√
gii

+ τm jΓi
m j
√

gii (D.4)

There is no summation on the i index in the above equations, the effective pressure is given by P
′
=

P+2ρk/3 and the stress, τi j, is expanded in Section C.5.2.

D.2 U-Momentum

It is assumed that only the wall-normal (or ζ-direction) gradient of the stress tensor is significant

across the subgrid. Writing convection in the form described above, the subgrid momentum equation

becomes:

ρ
∂U (i)

∂t
+

ρU ( j)

√
g j j

(
∂U (i)

∂ξ j

)∗

=
1
J

∂
∂ζ
(√

giiJτi3)+Si
U (D.5)

where the source term, Si
U , is given by Equation (D.4). The subgrid stress tensor, τi3 is obtained from

Section C.5.2, where it is assumed that only the wall-normal gradient of the wall-parallel velocity is

significant:

τi3 = µg33U i
,3 −ρuiw (D.6)

Using a linear eddy-viscosity turbulence model, the Reynolds stress is given by:

−ρuiw = µt g
33U i

,3 −
2
3

gi3ρk (D.7)

and the U -momentum diffusion term can then be written, using Equation (C.99):
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where (µe f f = µ+µt). Expanding the underbraced term using the quotient rule:

1
J

∂
∂ζ

[
J
√

g11µe f f g33 ∂
∂ζ

(
U√
g11

)]
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µe f f g33U
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∂ζ

)
(D.9)

where, from Equation (C.77):
∂√g11

∂ζ
=

g1m√
g11

Γm
13 (D.10)

The diffusion term can, therefore, be written:
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∂
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)
+S (D.11)

where:
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(D.12)

Finally, the subgrid U -momentum equation can be written:

ρU√
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(
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)∗
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(
∂U
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where the source term, S1
U , is now given by:

S1
U = −g1 j√g11
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′
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(D.14)

and the pressure term includes the isotropic component of the Reynolds stress
(

P
′
= P+2ρk/3

)
.

D.3 V -Momentum

The process described above to derive the subgrid U -momentum equation can be repeated to obtain

the wall-parallel V -momentum equation:

ρU√
g11

(
∂V
∂ξ

)∗
+

ρV√
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(
∂V
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(
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∂
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)
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U (D.15)
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where:

S2
U = −g2 j√g22
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′
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(D.16)

D.4 Scalar, φ

The subgrid steady-flow scalar equation is obtained from Equation (C.71) and (C.130) by neglecting

diffusive fluxes parallel to the wall:

ρU√
g11

∂φ
∂ξ

+
ρV√
g22

∂φ
∂η

+
ρW√

g33

∂φ
∂ζ

=
1
J

∂
∂ζ
(
JJ3

φ
)
+Sφ (D.17)

where the scalar flux, J3
φ , is given by:

J3
φ =

(
Γφ +

µt

σφ

)
g33 ∂φ

∂ζ
(D.18)

D.5 Turbulent Kinetic Energy, k

The subgrid k-equation, obtained in a similar manner to that described above for the scalar equation,

is given by:

ρU√
g11

∂k
∂ξ

+
ρV√
g22

∂k
∂η

+
ρW√

g33

∂k
∂ζ

=
1
J

∂
∂ζ

[
Jg33

(
µ+

µt

σk

)
∂k
∂ζ

]
+G−ρε (D.19)

where the production rate of turbulent kinetic energy, G, is as follows:

G = −ρgimu jumU i
, j (D.20)

All the components of the production term are included in the UMIST-N wall function to account

for turbulence generation due to both normal and shear stress. Expressions for the Reynolds stress(
−ρuiu j

)
and strain-rate

(
U i

, j

)
are given above (see Equations C.89 to C.105). The expanded pro-
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duction term, G, has three dummy indices and therefore expands to 27 terms, as follows:

G = −ρuu(g11U,1 +g21V,1 +g31W,1)

−ρuv(g12U,1 +g22V,1 +g32W,1)

−ρuw(g13U,1 +g23V,1 +g33W,1)

−ρuv(g11U,2 +g21V,2 +g31W,2)

−ρvv(g12U,2 +g22V,2 +g32W,2)

−ρvw(g13U,2 +g23V,2 +g33W,2)

−ρuw(g11U,3 +g21V,3 +g31W,3)

−ρvw(g12U,3 +g22V,3 +g32W,3)

−ρww(g13U,3 +g23V,3 +g33W,3) (D.21)

The expression for the total dissipation rate is simplified by only considering the gradient of k1/2

normal to the wall (i.e. in the ζ-direction):

ε = ε̃+2νg jm

(
∂k1/2

∂ξm

)(
∂k1/2

∂ξ j

)

≈ ε̃+2νg33

(
∂k1/2

∂ζ

)(
∂k1/2

∂ζ

)
(D.22)

D.6 Dissipation Rate, ε̃

The subgrid ε̃-equation is given by:

ρU√
g11

∂ε̃
∂ξ

+
ρV√
g22

∂ε̃
∂η

+
ρW√

g33

∂ε̃
∂ζ

=
1
J

∂
∂ζ

[
Jg33

(
µ+
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)
∂ε̃
∂ζ

]

+cε1 f1G
ε̃
k
− cε2 f2ρ

ε̃2

k
+ρYc +Pε3

(D.23)

The source terms appearing in the ε̃-equation include production (cε1Gε̃/k), dissipation
(
cε2ε̃2/k

)
,

Yap correction (Yc) and the near-wall gradient production source term (Pε3). The production term, G,

is expanded as above, Equation (D.21). The full expansion of the gradient production source term,

Pε3, is given by:

Pε3 = 2µνt gimg jngl p (gnoUm
,o

)
,p

(
g jkU i

,k

)
,l

(D.24)
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where, from Equation (B.109), the double-derivative of the velocity component is given by:

(
g jkU i

,k

)
,l

=
∂
(

g jkU i
,k

)

∂ξl +g jkUm
,k Γi

ml +gmkU i
,kΓ j

ml (D.25)

Clearly, the full expansion of Pε3 cannot be used within the UMIST-N wall function without con-

siderable cost. To simplify this term, it is assumed that only the gradient of the wall-parallel U and

V velocity components in the wall-normal ζ-direction are significant (i.e. k = l = o = p = 3 and

i = m = 1,2):

Pε3 = 2µνt

[
g11g jng33 (gn3U,3

)
,3

(
g j3U,3

)
,3 +g22g jng33 (gn3V,3

)
,3

(
g j3V,3

)
,3

]
(D.26)

= 2µνt g11g33.{
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(D.27)

where the double-derivative term is obtained from:

(
g j3U i

,3

)
,3

=
∂
(

g j3U i
,3

)

∂ζ
+g j3 (U,3Γi

13 +V,3Γi
23

)
+U i

,3

(
g13Γ j

13 +g23Γ j
23 +g33Γ j

33

)
(D.28)

The above expressions require the cell boundary values of strain-rates U,3 and V,3 (given by Equations

C.99 and C.102), the contravariant metric tensor g33 and the Jacobian, J.

D.7 Non-Linear EVM

In the non-linear eddy-viscosity model (NLEVM) of Craft et al. [30], the Reynolds stress is a function

of linear, quadratic and cubic combinations of strain-rate and vorticity. The constitutive equation for

the Reynolds stress anisotropy, ai j , defined as the traceless ratio of the Reynolds stress to the turbulent

kinetic energy is given in Equation (2.27) for Cartesian coordinates. In order to satisfy the summation

convention in non-orthogonal curvilinear coordinates (i.e. summation between repeated upper and
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lower pairs of indices) this becomes:

ai j =
uiu j

k
− 2

3
gi j

= −νt

k
Si j

+c1
νt

ε̃

(
gklS

ikS jl − 1
3

gkmglnSklSmngi j
)

+c2
νt

ε̃

(
gklΩikS jl +gklΩ jkSil

)

+c3
νt

ε̃

(
gklΩikΩ jl − 1

3
gkmglnΩklΩmngi j

)

+c4
νt k
ε̃2

(
SkiΩl j +Sk jΩli

)
glmgknSmn

+c5
νt k
ε̃2

(
gklgmnΩikΩlnSm j +gklgmnSikΩlnΩm j − 2

3
gklgmognpSkmΩonΩplgi j

)

+c6
νt k
ε̃2 gkmglnSi jSmlSkn

+c7
νt k
ε̃2 gkmglnSi jΩmlΩkn (D.29)

with non-orthogonal curvilinear strain-rate and vorticity tensors:

Si j = g jmU i
,m +gimU j

,m Ωi j = g jmU i
,m −gimU j

,m (D.30)

The Craft et al. model also involves a cµ function which is sensitized to the dimensionless strain-rate

and vorticity invariants. In Cartesian coordinates these are given by:

S̃ =
k
ε̃

√
1
2

Si jSi j Ω̃ =
k
ε̃

√
1
2

Ωi jΩi j (D.31)

In order to satisfy the summation convention in non-orthogonal curvilinear coordinates two additional

contravariant metric tensors must be introduced into the above expression:

S̃ =
k
ε̃

√
1
2

gikg jlSk jSil Ω̃ =
k
ε̃

√
1
2

gikg jlΩk jΩil (D.32)

The recent Craft et al. paper [67] introduced an additional term in the cµ function involving the di-

mensionless third invariant of the strain-rate tensor, SI . In Cartesian coordinates this is given by:

SI =
Si jS jkSki

(SnlSnl/2)3/2
(D.33)

and in curvilinear coordinates:

SI =
gilg jmgknSl jSmkSni

(goqgprSqpSor/2)3/2
(D.34)
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The SI term in non-orthogonal curvilinear coordinates, with ten dummy indices

(i, j,k, l,m,n,o, p,q,r), is extremely expensive to calculate fully and was not used in the non-orthogonal

UMIST-N wall function implementation of the Craft et al. model. To improve the numerical stability

of the model, the tensorially linear c6 and c7 terms in Equation D.29 are treated as effective viscosity

terms when their sum is negative (see discussion in Section 2.3). The Reynolds stress is then given

by:

−ρuiu j = µ′t S
i j −ρûiu j − 2

3
gi jρk (D.35)

where the modified eddy-viscosity, µ′
t , and the remaining higher-order components of the Reynolds

stress, ûiu j, are given by:

µ′t = µt −µt
k2

ε̃2 min
[(
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)

,0
]

(D.36)
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(D.37)

Using the NLEVM, the subgrid momentum equation becomes:
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where i = 1 and i = 2 for the subgrid U - and V -momentum equations, respectively. The source term,

Si
U , is now given by:

Si
U = −gi j√gii
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′
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i jgim√
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+ τm jΓi
m j
√

gii

+
1
J

∂
∂ζ

[
Jµ

′
e f f g33

(
U (m)

√
gii√

gmm
Γi

m3 −U
gim

gii
Γm

i3

)]

1
J

∂
∂ζ

(√
giiJρûiw
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(D.39)

where the underbraced term in Equation (D.39) is a new term introduced by the NLEVM, the modified

eddy-viscosity is given by µ
′
e f f = µ + µ

′
t , and the stress tensor terms in the above equations are now
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calculated using:

τi j = µ
′
e f f Si j −ρûiu j − 2

3
gi jρk (D.40)

D.8 Differential Yap Correction

The differential length-scale correction developed by Iacovides & Raisee [66] is given by:

Ydc = cw
ε̃2

k
max

[
F (F +1)2 ,0

]
(D.41)

where:

F =
1
cl

[(
∂l
∂x j

∂l
∂x j

)1/2

−dledy

]
(D.42)

The constants cw and cl and the function dledy are given in Section 2.2 and l is the turbulence length

scale, calculated from l = k3/2/ε. The gradient of the length scale in non-orthogonal curvilinear

coordinates given by:

F =
1
cl

[(
g jk ∂l

∂ξ j

∂l
∂ξk

)1/2

−dledy

]
(D.43)

In the UMIST-N wall function, this is simplified to:

F =
1
cl

[(
g33 ∂l

∂ζ
∂l
∂ζ

)1/2

−dledy

]
(D.44)

where it is assumed that the gradient of the length scale parallel to the wall is negligible in comparison

with the gradient normal to the wall.


