Appendix D

Subgrid Wall Function Transport
Equations

In the subgrid wall function a number of assumptions are made to obtain a set of simplified transport
equations:

e Only the velocity components parallel to the wall are solved.

o Diffusion parallel to the wall is assumed to be negligible in comparison with diffusion normal
to the wall.

e Convection is modelled in non-conservative form.

e The velocity component normal to the wall is obtained from continuity across the subgrid con-
trol volumes, with an additional scaling factor to ensure consistency in the boundary conditions.

For the present purposes of deriving transport equations in non-orthogonal curvilinear coordinates it
is assumed that the wall is in the &L — &2 (or & — 1) plane, and &2 = C is the wall-normal direction®. In
this reference frame, only the U- and V-momentum equations are solved across the subgrid and only
diffusion terms involving gradients in the ¢-direction are significant.

D.1 Convection of Momentum

In Appendix C, the convection term in the momentum equation was derived as follows:
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Lin fact, if a skewed grid is employed, the Z-direction may be at an angle to the wall other than 90°.
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200 APPENDIX D. Subgrid Wall Function Transport Equations

where U () represents the physical velocity components aligned to the curvilinear base vectors and the
last two terms, involving Christoffel symbols, arise from the use of a non-uniform grid. The UMIST-
N wall function employs an upwind scheme for discretizing the convection term. However, rather
than use the above expression for convection of momentum, the UMIST-N wall function transforms
the velocity components in the upstream cell from the coordinate system used in the upstream cell
into the coordinate system used in the current cell. To illustrate this, Figure D.1 shows a curved
surface with a wall-parallel U-velocity in the positive &-direction and W-velocity in the {-direction.
Using an upwind scheme, the wall-parallel convection term for node P is calculated by transforming
the upstream velocity at node W from the coordinate frame used in cell W into the coordinate frame
of cell P. Since the velocity components in the upstream and the current cells are expressed using
identical base vectors (i.e. base vectors do not rotate between the adjacent cells), gradients of the
metric tensors are zero. This means that the Christoffel symbols appearing in Equation D.1 are zero
and the expression simplifies to:
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The asterisk is introduced around the velocity gradient term to denote that upstream values of U () are
transformed into the coordinate system used in the current cell. In the current version of the UMIST-
N wall function, the upstream velocity is transformed from the upstream covariant base vectors into
Cartesian base vectors and from there into the current cell covariant base vectors. Details of these
transformations which involve the Jacobian and inverse Jacobian matrices are provided in Section
E.8. Reasons for adopting this practice are discussed in Appendix G.

Identical base vectors

Upstream velocity at node W used for velocity components
transformed into coordinates incel Wandcel P
of cell P

JAN

Figure D.1: Schematic of subgrid cells over a curved wall showing the transformation practice adopted
for convection of momentum.

The subgrid momentum equations in non-orthogonal curvilinear coordinates can therefore be writ-
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ten as follows:
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where the source term, S!,, is given by:
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There is no summation on the i index in the above equations, the effective pressure is given by P’ =
P +2pk/3 and the stress, T'), is expanded in Section C.5.2.
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D.2 U-Momentum

It is assumed that only the wall-normal (or {-direction) gradient of the stress tensor is significant
across the subgrid. Writing convection in the form described above, the subgrid momentum equation
becomes:

Ul pul fou®\" 19 o
P4 +m 5] _ja—z(\/ﬁJr)JrsU (D.5)

where the source term, S}, is given by Equation (D.4). The subgrid stress tensor, T2 is obtained from
Section C.5.2, where it is assumed that only the wall-normal gradient of the wall-parallel velocity is
significant:

™ = pg®BUk - puiw (D.6)

Using a linear eddy-viscosity turbulence model, the Reynolds stress is given by:
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and the U-momentum diffusion term can then be written, using Equation (C.99):
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where (Uess = 1+ Lk ). Expanding the underbraced term using the quotient rule:
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where, from Equation (C.77):
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The diffusion term can, therefore, be written:
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where:
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Finally, the subgrid U-momentum equation can be written:
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where the source term, SllJ, is now given by:
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and the pressure term includes the isotropic component of the Reynolds stress (P' =P+ 2pk/3).

D.3 V-Momentum

The process described above to derive the subgrid U-momentum equation can be repeated to obtain
the wall-parallel V-momentum equation:
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where;
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The subgrid steady-flow scalar equation is obtained from Equation (C.71) and (C.130) by neglecting
diffusive fluxes parallel to the wall:
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where the scalar flux, J, is given by:
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D.5 Turbulent Kinetic Energy, k

The subgrid k-equation, obtained in a similar manner to that described above for the scalar equation,
is given by:
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where the production rate of turbulent Kkinetic energy, G, is as follows:
G = —pgimulumU}, (D.20)

All the components of the production term are included in the UMIST-N wall function to account
for turbulence generation due to both normal and shear stress. Expressions for the Reynolds stress
(—pﬁ) and strain-rate (Ufj) are given above (see Equations C.89 to C.105). The expanded pro-
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duction term, G, has three dummy indices and therefore expands to 27 terms, as follows:
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The expression for the total dissipation rate is simplified by only considering the gradient of k1/2
normal to the wall (i.e. in the {-direction):
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D.6 Dissipation Rate, €

The subgrid €-equation is given by:
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The source terms appearing in the €-equation include production (ce1GE€/k), dissipation (cgzéz/k),
Yap correction (Y¢) and the near-wall gradient production source term (Pe3). The production term, G,
is expanded as above, Equation (D.21). The full expansion of the gradient production source term,
Pe3, is given by:
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where, from Equation (B.109), the double-derivative of the velocity component is given by:
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Clearly, the full expansion of Pg3 cannot be used within the UMIST-N wall function without con-
siderable cost. To simplify this term, it is assumed that only the gradient of the wall-parallel U and

V velocity components in the wall-normal -direction are significant (i.e. k=1=0=p =3 and
i=m=1,2):
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where the double-derivative term is obtained from:
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The above expressions require the cell boundary values of strain-rates U 3 and V 3 (given by Equations
C.99 and C.102), the contravariant metric tensor g33 and the Jacobian, J.

D.7 Non-Linear EVM

In the non-linear eddy-viscosity model (NLEVM) of Craft et al. [30], the Reynolds stress is a function
of linear, quadratic and cubic combinations of strain-rate and vorticity. The constitutive equation for
the Reynolds stress anisotropy, a'l, defined as the traceless ratio of the Reynolds stress to the turbulent
Kinetic energy is given in Equation (2.27) for Cartesian coordinates. In order to satisfy the summation
convention in non-orthogonal curvilinear coordinates (i.e. summation between repeated upper and



206 APPENDIX D. Subgrid Wall Function Transport Equations

lower pairs of indices) this becomes:
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with non-orthogonal curvilinear strain-rate and vorticity tensors:
s =gmuj, +g"ul, Q' =gI"uy, —g"u}; (D-30)

The Craft et al. model also involves a ¢y, function which is sensitized to the dimensionless strain-rate
and vorticity invariants. In Cartesian coordinates these are given by:
1
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In order to satisfy the summation convention in non-orthogonal curvilinear coordinates two additional
contravariant metric tensors must be introduced into the above expression:

= &\ Sungpsis 6= 5\ Zognial (0.32)

The recent Craft et al. paper [67] introduced an additional term in the ¢, function involving the di-
mensionless third invariant of the strain-rate tensor, S,. In Cartesian coordinates this is given by:
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The S, term in non-orthogonal curvilinear coordinates, with ten dummy indices
(i, j,k,I,m,n,0,p,q,r), is extremely expensive to calculate fully and was not used in the non-orthogonal
UMIST-N wall function implementation of the Craft et al. model. To improve the numerical stability
of the model, the tensorially linear cg and c; terms in Equation D.29 are treated as effective viscosity
terms when their sum is negative (see discussion in Section 2.3). The Reynolds stress is then given

by:
—puiul = S" — puiul — %g”pk (D.35)

where the modified eddy-viscosity, p{, and the remaining higher-order components of the Reynolds
stress, TU;, are given by:
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Using the NLEVM, the subgrid momentum equation becomes:
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where i =1 and i = 2 for the subgrid U- and V-momentum equations, respectively. The source term,

S!,, is now given by:
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where the underbraced term in Equation (D.39) is a new term introduced by the NLEVM, the modified
eddy-viscosity is given by u/eff = U+ u{, and the stress tensor terms in the above equations are now
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calculated using:
T :u;ffS”—pW—%g”pk (D.40)
D.8 Differential Yap Correction

The differential length-scale correction developed by lacovides & Raisee [66] is given by:
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The constants ¢y, and ¢, and the function dledy are given in Section 2.2 and | is the turbulence length
scale, calculated from | = k®2/¢. The gradient of the length scale in non-orthogonal curvilinear
coordinates given by:
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In the UMIST-N wall function, this is simplified to:
1| gaan\Y?

where it is assumed that the gradient of the length scale parallel to the wall is negligible in comparison
with the gradient normal to the wall.



