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ABSTRACT

Despite the year-on-year increase in computer
speeds, wall functions are still used in the majority
of industrial turbulent flow CFD calculations. Their
continued usage is driven by the desire to tackle new,
larger, more complex, perhaps multiphysics, prob-
lems rather than simply improve upon the wall res-
olution of existing calculations. Whilst this desire
is understandable, care should be taken in apply-
ing standard log-law wall functions to these com-
plex flows. The present paper highlights the limi-
tations of standard wall functions in predicting heat
transfer downstream from a pipe expansion. An al-
ternative generalized wall function is shown to give
much improved results, comparable, in fact, to full
low-Reynolds-number model treatments where a fine
grid is used to resolve the viscous-affected sublayer.
This new wall function has previously been applied
to a range of flows, including fully-developed chan-
nel, impinging jet and spinning-disc flows. The
present paper extends its application to flows involv-
ing corner-induced separations.

NOMENCLATURE
� �	��
 Constants of integration�

Turbulent kinetic energy�� Dimensionless wall distance, �������������
 � Dimensionless wall distance,  � � �����! ����"�#

Production rate of
�

$ � “Friction” temperature,
$ �%�'&)(+*-,.,/��01�321���$ � Dimensionless temperature,$ ���54 $ (+*-,.,�6 $%7 � $ �

��� “Friction” velocity, �8�9�;: <=(+*-,.,>��0
� � Dimensionless velocity, �?�@�A�B Dissipation rate

C Prandtl numberC � Turbulent Prandtl numberD Von Kármán constant in the velocity
log-law, DFE'G	HJI@K

D � Von Kármán constant in the tempertaure
log-law, D � �LD�� C �<=(+*-,., Wall shear stress

INTRODUCTION
The prediction of heat transfer downstream from an
axisymmetric pipe expansion, and its 2D equivalent,
the backward-facing step, has been the subject of nu-
merous previous studies (e.g. [1, 2, 3, 4, 5]). This
reflects both the usefulness of the flow for turbulence
model validation and its industrial relevance. The
flow involves a fully-developed pipe flow entering
a larger-section pipe, whereupon the boundary layer
separates at the sharp corner, undergoes flow curva-
ture and then reattaches on the downstream pipe wall
(see Figures 1 and 2 for a flow schematic and typ-
ical mean streamlines). Previous work within our
research group has indicated that the use of stan-
dard linear eddy-viscosity RANS models is some-
what questionable in this flow, due to the linear
model’s relatively poor performance in flows involv-
ing streamline curvature and flow impingement. The
non-linear

� 6 B model of Craft et al. [6] is thus tested
in the present paper, although linear

� 6 B model re-
sults are also shown for comparison. Since there are
significant transport effects on the near-wall turbu-
lence, standard wall functions are not generally accu-
rate in such a flow. However, the alternative of fully-
resolving the boundary layers, using low-Reynolds-
number turbulence models, can lead to prolonged
computing times. This is especially true if structured
Cartesian meshes are employed, due to the fact that
the fine grid near the walls extends into the main flow
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domain. Although this latter problem could be alle-
viated, to some extent, by using hanging nodes or un-
structured meshes to refine just the near-wall region,
computing times would still be relatively large. An
alternative approach, explored here, is to use a wall
function that can accurately approximate the near-
wall turbulence transport. As will be shown, this
numerical wall-function approach offers significant
savings in terms of computing times over the stan-
dard low-Reynolds-number model approach, whilst
providing a comparable level of accuracy.

Figure 1: Pipe-expansion geometry

Results are shown for two Reynolds numbers: 17,000
and 40,000 (based on the downstream pipe diame-
ter and bulk velocity). The ratio of the upstream to
downstream pipe diameters, � ��� , is G	HJI . Experimen-
tal measurements of this configuration were under-
taken by Yap [7]. Constant heat flux conditions are
applied at the walls and the temperature differences
are sufficiently small that variations of viscosity and
density can be assumed negligible.
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Figure 2: Typical calculated mean streamlines

NUMERICAL METHODS
Calculations were performed using the in-house
finite-volume TEAM code [8]. This has a fully-
staggered Cartesian grid arrangement where scalars
are stored at cell centres and velocities at cell faces.
The pressure-velocity coupling is handled by the
SIMPLE algorithm, the third-order accurate QUICK
scheme is used for convection of momentum and

temperature whilst power-law differencing (PLDS) is
used for convection of turbulence parameters.
Two different RANS models are considered: the
Launder-Sharma linear

� 6 B model [9] and the cubic
non-linear

� 6 B model of Craft et al. [6]. The former
model incorporates the so-called “Yap correction”
[7], whilst the latter model uses a differential length-
scale correction in addition to quadratic and cu-
bic strain-rate/vorticity terms in the Reynolds-stress
constitutive equation, and a strain-rate-dependent ���
function (for details, see [5]). These two turbulence
models are used in combination with three different
wall treatments: a simplified form of the Chieng &
Launder wall function [10] (hereafter denoted SCL),
the generalized numerical wall function of Craft et
al. [11] (denoted NWF) and low-Reynolds-number
model treatments (denoted Low-Re). The SCL wall
function is similar to the standard wall functions em-
ployed in many commercial CFD codes, with as-
sumed logarithmic profiles for velocity and temper-
ature:

� � � �D ��� 4 
  � 7
$ � � �

D �
���  �
	 � �

In the above equations, the superscript “ � ” is used
instead of the usual “

	
” to indicate that the veloc-

ity is made dimensionless with
� ���! 

instead of ��� �: <=(+*-,.,>��0 , following Launder & Spalding [12]. This
avoids a singularity occurring at stagnation points,
where <=( * , , tends to zero. Cell-averaged produc-
tion and dissipation rates are calculated for the

�
-

equation by assuming constant values of shear stress
and turbulence energy across the near-wall cell. The
value of B is specified at the wall-adjacent node based
on the assumption of a linear length-scale variation4���'� D� 7 . If the near-wall node is judged to be
within the viscous sublayer (assumed to be  ��� K � )
linear profiles are used for velocity and temperature
( � � �  � and

$ � � C  � ) instead of the log-laws, and
the cell-averaged production is set to zero,

" # �'G .

Numerical Wall Function: Details of the numer-
ical wall function can be found in reference [11] and
the PhD thesis of Gant [13]. Briefly, the model solves
numerically the thin boundary-layer-type equations
for wall-parallel momentum,

�
, �B and temperature

across a fine grid embedded in the near-wall cells.
The wall function transport equations take the generic
form in Cartesian coordinates:

0�� ������ 	 0�� ����  � ��  ��� ���� �� 	 �
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where
�

denotes � ,
�

, �B or
$

, the  -direction is nor-
mal to the wall and the source term

�
includes the

pressure-gradient in the momentum equation and the
production and dissipation terms in the

�
and �B equa-

tions. For the present application, cylindrical-polar
coordinates are used for the embedded-grid transport
equations. Instead of solving a pressure-correction
equation across the embedded grid, the wall-normal
velocity is calculated from continuity. One itera-
tion of the wall-function calculations is performed
for each main-grid iteration, so the solutions in the
near-wall region and in the bulk of the flow domain
converge at the same time. Following each iteration,
the near-wall profiles of � ,

�
, �B and

$
are used to

calculate wall-function parameters, such as the wall
shear stress, <)(+*-,., , cell-averaged production and dis-
sipation rates,

"A#
and B , and wall heat flux, &�(+*-,., .

These wall-function parameters are then employed as
boundary conditions and modified source terms in the
main-grid code in much the same way as with stan-
dard log-law wall functions. Previous studies [11, 13]
have shown that this wall function produces results
in good agreement with full low-Reynolds-number
model treatments in flows with a single plane wall
(channel flow, impinging jets and spinning discs). For
the present flow, additional consideration needs to be
given to the treatment of corners.

At external (i.e. convex) corners, within the
embedded-grid zone, zero gradient conditions in the
wall-parallel direction are used to specify � , � ,

�
, �B

and
$

on the open-end boundary (see Figure 5). This
zero-gradient condition has, in fact, little effect on the
solution, since in any case wall-parallel gradients in
the diffusion term are ignored in the wall-function re-
gion (

� � ��� 4 � ��� � ��� 7 is assumed zero). It was also
found necessary to set the pressure gradient in the
wall-function domain to zero for two rows of cells ad-
jacent to the external corner. This ad-hoc correction
was necessary to prevent an unphysical flow reversal
in the near-wall region. However, even without the
the correction the flow reversal was limited to just a
few cells and produced only a minor difference in the
overall heat transfer predictions.

For internal corners, there are effectively two over-
lapping numerical wall function calculations for the
same main-grid cell in the corner (when the wall-
function is applied separately to the north and the
west faces of the corner cell). To calculate the cell-
averaged source terms for the main-grid

�
and �B equa-

tions in this cell, the arithmetic mean is taken of the
the two wall-function values. For example, if the cell-
averaged production calculated from applying the
wall-function to the north face of the cell is

"������ ���# ,

and to the west face,
" (��	� �# , then the value used in the

main-grid calculation is just G	H�
� "������ ���# 	 " (��	� �# � .

A similar approach is used for the cell-averaged dissi-
pation, B , wall damping, 
 , and Yap correction, ��� . In
fact, tests have shown that the overall predicted flow
is reasonably insensitive to the treatment of these cor-
ner cells.
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Figure 3: Low-Re grid
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Computational Grids: For the low-Reynolds-
number model, a grid of

� I G�� � I G nodes was used
(Figure 3) which for the higher Reynolds number
gave �� � � on all walls except for a few nodes
near the external corner on the downstream-facing
step. Increasing the number of nodes to

��� G�� ��� G
had practically no effect on the predicted heat trans-
fer coefficient, whilst reducing the number of nodes
to
� G K�� � K�G (axial � radial) did produce a moder-

ate change. Results using the
� I G�� � I G grid were

therefore considered adequately grid-independent.
For the wall-function calculations, three different
grids were employed, using � 
���
�G , � 
�� I G and� 
 �"!�G nodes in the axial � radial directions, respec-
tively (see, for example, Figure 4). The near-wall cell
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size with the coarsest � 
 ��!�G grid was approximately
double that of the finest � 
 �
�G grid (a maximum  �
of 48 compared to ��� * � �;K ! for the � 
 ��
�G grid).
Figure 5 shows a close-up view of the external corner
with the embedded grid. For the � 
�� 
�G grid, 30 addi-
tional nodes were used on each wall in the embedded
grid, whilst for the coarser � 
 � I G and � 
 � !�G grids
40 embedded grid nodes were used. Using greater
grid resolution in the wall-function domains made no
difference to the results.
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Figure 5: Close-up of the external corner region
showing the embedded grid used with the numerical

wall function.

RESULTS
The predicted Nusselt numbers on the downstream
(outer) pipe wall using the linear

� 6 B model at��� � I G � G G G are shown in Figures 6a and 6b. The
two plots compare the results of the SCL and NWF
wall-function treatments using three different grids
against those of the low-Reynolds-number model and
the experimental data of Yap [7]. In these, and sub-
sequent figures, the Nusselt number is normalized
with the Nusselt number of fully-developed pipe flow,���	��
 �'G	H G K ! ������ ��"������ � . The low-Re linear

� 6 B
model is in fairly good agreement with the over-
all shape of the experimental

���
distribution, al-

though the peak value is over-predicted by around
20%. By comparison, the standard SCL wall func-
tion underpredicts the experimental

���
by around

40% and the peak value occurs too far upstream, at
approx.

� ��� E �
instead of the experimental peak

plateau between ��� � ��� � � G . There is a sudden
change in the slope of the SCL wall function

���
pro-

file using the � 
 � 
�G grid in the recovery region at� ��� E ��� . This is due to the viscous sublayer be-
coming sufficiently thick that the near-wall  � drops
below the threshold value of K � and the wall func-
tion therefore selects linear velocity and temperature
profiles instead of the log-law.

In contrast to the SCL results, the numerical wall
function results (Figure 6b) are in good agreement
with those of the low-Re model, both in terms of
shape and peak values of

���
. There is a mild de-

pendence on the near-wall cell size in the region of
flow separation, from

� ��� � G to
� ��� � � G , with

the
���

peak becoming somewhat overpredicted and
moving upstream as the number of grid nodes is re-
duced from � 
 � 
�G to � 
 ��!�G . This grid dependence,
although fairly small, is slightly greater than that ob-
served previously in applying the NWF to impinging
jet flows (see [11]).
The non-linear

� 6 B model results in Figures 7a and
7b show broadly similar trends to those observed with
the linear model. Overall, the Nusselt number levels
are slightly lower using the non-linear model, with
the low-Re model overpredicting the experimental
values by only around 5%, whilst the location of the
peak

���
occurs at around !�� too far downstream.

The SCL wall function results, again, significantly
underpredict the heat transfer coefficient whilst the
numerical wall function shows good agreement with
the low-Re model, with a similar level of grid de-
pendence to that exhibited previously with the linear
model.
Corresponding results at the lower Reynolds number
of
��� � ��� � G G G are shown in Figure 8 for the linear� 6 B model and Figure 9 for the non-linear model.

The SCL and NWF show similar trends to those ex-
hibited at the higher Reynolds number. Interestingly,
the linear

� 6 B model actually performs better here
than the non-linear model. It should be noted that this
Reynolds-number-sensitivity of the Craft et al. non-
linear model is currently being investigated by the
Manchester University (ex-UMIST) group.
A comparison of the computing times for the three
different wall treatments is given in Table 1. The nu-
merical wall function calculation took approximately
twice as long as the log-law SCL wall function cal-
culation but was a staggering 260 times faster than
the full low-Reynolds-number model calculation. All
calculations were performed using the same levels of
compiler optimization and under-relaxation on an In-
tel P4 2.8GHz desktop PC.

CONCLUSIONS
The generalized numerical wall function of Craft et
al. [11] has been applied to a pipe-expansion flow
at two Reynolds numbers, using two different turbu-
lence models. Results obtained using this numerical
wall function are in very good agreement with the
Nusselt number predictions of the full low-Reynolds-
number model treatments and experimental data. In
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contrast, the standard log-law wall function is unable
to capture the correct heat transfer trends and the re-
sults are sensitive to the location of the edge of the
viscous sublayer. Computing times are two orders of
magnitude less with the numerical wall function than
the full low-Re treatment.
The numerical wall function clearly offers the ben-
efits of an accuracy comparable to the low-Re ap-
proach at a vastly reduced computing cost. The speed
advantages of the wall function are due to two princi-
pal factors: a considerably lower number of grid cells
and a faster solution methodology based on solving
parabolic-type transport equations in the near-wall
region and using continuity instead of a pressure-
correction equation to determine the wall-normal ve-
locity. The comparisons of computing times shown
here are based on the use of a structured Cartesian
grid, which inevitably leads to the low-Re approach
being extremely costly due to the fine grid cells ex-
tending from the wall-region into the main flow do-
main. However, one would still expect the low-Re
model calculations to take considerably longer than
those of the numerical wall-function even if unstruc-
tured locally-refined grids had been used.
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Wall Treatment Grid Nodes Iterations CPU Time (s) per iteration Total CPU Time (s) Relative Time
SCL ��������� 13125 0.0072 95 1
NWF ��������� 11484 0.0160 184 1.94

Low-Re �
	������
	�� 754720 0.0643 48540 510

Table 1: Comparison of computing times for the linear
� 6 B model at

��� �'I G � G G G . For the numerical wall
function, 30 additional embedded-grid nodes were used along each of the three wall sections.
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Figure 6:
��� � I G � G G G using the linear

� 6 B model
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Figure 7:
��� �'I G � G G G using the non-linear

� 6 B model

x/H

N
u/

N
u

db

0 5 10 15 20 25
0

1

2

3

4

5

6

x/H

N
u/

N
u

db

0 5 10 15 20 25
0

1

2

3

4

5

6

Figure 8:
��� � ��� � G G G using the linear

� 6 B model
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Figure 9:
��� � ��� � G G G using the non-linear

� 6 B model

The graphs on this page present Nusselt number profiles on the downstream pipe wall. Those on the
left-hand-side of the page are SCL wall function results and on the right are NWF results. Solid line: low-Re
model results; broken lines: wall function calculations using different grids ( ��������� : � 
��!�G ; – – –: � 
�� I G ;

– � –: � 
�� 
�G ), symbols: experiments.


